Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Clin Neurophysiol ; 157: 96-109, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091872

RESUMO

OBJECTIVE: The P3 is an event-related response observed in relation to task-relevant sensory events. Despite its ubiquitous presence, the neural generators of the P3 are controversial and not well identified. METHODS: We compared source analysis of combined magneto- and electroencephalography (M/EEG) data with functional magnetic resonance imaging (fMRI) and simulation studies to better understand the sources of the P3 in an auditory oddball paradigm. RESULTS: Our results suggest that the dominant source of the classical, postero-central P3 lies in the retro-splenial cortex of the ventral cingulate gyrus. A second P3 source in the anterior insular cortex contributes little to the postero-central maximum. Multiple other sources in the auditory, somatosensory, and anterior midcingulate cortex are active in an overlapping time window but can be functionally dissociated based on their activation time courses. CONCLUSIONS: The retro-splenial cortex is a dominant source of the parietal P3 maximum in EEG. SIGNIFICANCE: These results provide a new perspective for the interpretation of the extensive research based on the P3 response.


Assuntos
Córtex Cerebral , Eletroencefalografia , Humanos , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Eletroencefalografia/métodos , Giro do Cíngulo , Imageamento por Ressonância Magnética/métodos , Potenciais Evocados P300/fisiologia
2.
Hum Brain Mapp ; 44(17): 5810-5827, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37688547

RESUMO

Cerebellar differences have long been documented in autism spectrum disorder (ASD), yet the extent to which such differences might impact language processing in ASD remains unknown. To investigate this, we recorded brain activity with magnetoencephalography (MEG) while ASD and age-matched typically developing (TD) children passively processed spoken meaningful English and meaningless Jabberwocky sentences. Using a novel source localization approach that allows higher resolution MEG source localization of cerebellar activity, we found that, unlike TD children, ASD children showed no difference between evoked responses to meaningful versus meaningless sentences in right cerebellar lobule VI. ASD children also had atypically weak functional connectivity in the meaningful versus meaningless speech condition between right cerebellar lobule VI and several left-hemisphere sensorimotor and language regions in later time windows. In contrast, ASD children had atypically strong functional connectivity for in the meaningful versus meaningless speech condition between right cerebellar lobule VI and primary auditory cortical areas in an earlier time window. The atypical functional connectivity patterns in ASD correlated with ASD severity and the ability to inhibit involuntary attention. These findings align with a model where cerebro-cerebellar speech processing mechanisms in ASD are impacted by aberrant stimulus-driven attention, which could result from atypical temporal information and predictions of auditory sensory events by right cerebellar lobule VI.


Assuntos
Transtorno do Espectro Autista , Criança , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Magnetoencefalografia , Cerebelo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Mapeamento Encefálico
3.
Hum Brain Mapp ; 44(14): 4848-4858, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37461294

RESUMO

Deep learning is increasingly being proposed for detecting neurological and psychiatric diseases from electroencephalogram (EEG) data but the method is prone to inadvertently incorporate biases from training data and exploit illegitimate patterns. The recent demonstration that deep learning can detect the sex from EEG implies potential sex-related biases in deep learning-based disease detectors for the many diseases with unequal prevalence between males and females. In this work, we present the male- and female-typical patterns used by a convolutional neural network that detects the sex from clinical EEG (81% accuracy in a separate test set with 142 patients). We considered neural sources, anatomical differences, and non-neural artifacts as sources of differences in the EEG curves. Using EEGs from 1140 patients, we found electrocardiac artifacts to be leaking into the supposedly brain activity-based classifiers. Nevertheless, the sex remained detectable after rejecting heart-related and other artifacts. In the cleaned data, EEG topographies were critical to detect the sex, but waveforms and frequencies were not. None of the traditional frequency bands was particularly important for sex detection. We were able to determine the sex even from EEGs with shuffled time points and therewith completely destroyed waveforms. Researchers should consider neural and non-neural sources as potential origins of sex differences in their data, they should maintain best practices of artifact rejection, even when datasets are large, and they should test their classifiers for sex biases.


Assuntos
Aprendizado de Máquina , Processamento de Sinais Assistido por Computador , Humanos , Masculino , Feminino , Eletroencefalografia/métodos , Redes Neurais de Computação , Artefatos
4.
Clin Neurophysiol ; 153: 21-27, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37419052

RESUMO

OBJECTIVE: Median nerve somatosensory evoked fields (SEFs) conduction times reflect the integrity of neural transmission across the thalamocortical circuit. We hypothesized median nerve SEF conduction time would be abnormal in children with Rolandic epilepsy (RE). METHODS: 22 children with RE (10 active; 12 resolved) and 13 age-matched controls underwent structural and diffusion MRI and median nerve and visual stimulation during magnetoencephalography (MEG). N20 SEF responses were identified in contralateral somatosensory cortices. P100 were identified in contralateral occipital cortices as controls. Conduction times were compared between groups in linear models controlling for height. N20 conduction time was also compared to thalamic volume and Rolandic thalamocortical structural connectivity inferred using probabilistic tractography. RESULTS: The RE group had slower N20 conduction compared to controls (p = 0.042, effect size 0.6 ms) and this difference was driven by the resolved RE group (p = 0.046). There was no difference in P100 conduction time between groups (p = 0.83). Ventral thalamic volume positively correlated with N20 conduction time (p = 0.014). CONCLUSIONS: Children with resolved RE have focally decreased Rolandic thalamocortical connectivity. SIGNIFICANCE: These results identify a persistent focal thalamocortical circuit abnormality in resolved RE and suggest that decreased Rolandic thalamocortical connectivity may support symptom resolution in this self-limited epilepsy.


Assuntos
Epilepsia Rolândica , Criança , Humanos , Epilepsia Rolândica/diagnóstico por imagem , Magnetoencefalografia , Tálamo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Lobo Occipital , Imageamento por Ressonância Magnética/métodos
5.
bioRxiv ; 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36945516

RESUMO

Objective: The P3 is an event-related response observed in relation to task-relevant sensory events. Despite its ubiquitous presence, the neural generators of the P3 are controversial and not well identified. Methods: We compared source analysis of combined magneto- and electroencephalography (M/EEG) data with functional magnetic resonance imaging (fMRI) and simulation studies to better understand the sources of the P3 in an auditory oddball paradigm. Results: Our results suggest that the dominant source of the classical, postero-central P3 lies in the retro-splenial cortex of the ventral cingulate gyrus. A second P3 source in the anterior insular cortex contributes little to the postero-central maximum. Multiple other sources in the auditory, somatosensory, and anterior midcingulate cortex are active in an overlapping time window but can be functionally dissociated based on their activation time courses. Conclusion: The retro-splenial cortex is a dominant source of the parietal P3 maximum in EEG. Significance: These results provide a new perspective for the interpretation of the extensive research based on the P3 response.

6.
J Autism Dev Disord ; 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932270

RESUMO

Auditory steady-state response (ASSR) has been studied as a potential biomarker for abnormal auditory sensory processing in autism spectrum disorder (ASD), with mixed results. Motivated by prior somatosensory findings of group differences in inter-trial coherence (ITC) between ASD and typically developing (TD) individuals at twice the steady-state stimulation frequency, we examined ASSR at 25 and 50 as well as 43 and 86 Hz in response to 25-Hz and 43-Hz auditory stimuli, respectively, using magnetoencephalography. Data were recorded from 22 ASD and 31 TD children, ages 6-17 years. ITC measures showed prominent ASSRs at the stimulation and double frequencies, without significant group differences. These results do not support ASSR as a robust ASD biomarker of abnormal auditory processing in ASD. Furthermore, the previously observed atypical double-frequency somatosensory response in ASD did not generalize to the auditory modality. Thus, the hypothesis about modality-independent abnormal local connectivity in ASD was not supported.

7.
Neuroimage Clin ; 37: 103336, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36724734

RESUMO

Individuals with autism spectrum disorder (ASD) commonly display speech processing abnormalities. Binding of acoustic features of speech distributed across different frequencies into coherent speech objects is fundamental in speech perception. Here, we tested the hypothesis that the cortical processing of bottom-up acoustic cues for speech binding may be anomalous in ASD. We recorded magnetoencephalography while ASD children (ages 7-17) and typically developing peers heard sentences of sine-wave speech (SWS) and modulated SWS (MSS) where binding cues were restored through increased temporal coherence of the acoustic components and the introduction of harmonicity. The ASD group showed increased long-range feedforward functional connectivity from left auditory to parietal cortex with concurrent decreased local functional connectivity within the parietal region during MSS relative to SWS. As the parietal region has been implicated in auditory object binding, our findings support our hypothesis of atypical bottom-up speech binding in ASD. Furthermore, the long-range functional connectivity correlated with behaviorally measured auditory processing abnormalities, confirming the relevance of these atypical cortical signatures to the ASD phenotype. Lastly, the group difference in the local functional connectivity was driven by the youngest participants, suggesting that impaired speech binding in ASD might be ameliorated upon entering adolescence.


Assuntos
Transtorno do Espectro Autista , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Sinais (Psicologia) , Fala , Magnetoencefalografia , Percepção Auditiva
8.
Front Psychiatry ; 13: 902332, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990048

RESUMO

Autism Spectrum (AS) is defined primarily by differences in social interactions, with impairments in sensory processing also characterizing the condition. In the search for neurophysiological biomarkers associated with traits relevant to the condition, focusing on sensory processing offers a path that is likely to be translatable across populations with different degrees of ability, as well as into animal models and across imaging modalities. In a prior study, a somatosensory neurophysiological signature of AS was identified using magnetoencephalography (MEG). Specifically, source estimation results showed differences between AS and neurotypically developing (NTD) subjects in the brain response to 25-Hz vibrotactile stimulation of the right fingertips, with lower inter-trial coherence (ITC) observed in the AS group. Here, we examined whether these group differences can be detected without source estimation using scalp electroencephalography (EEG), which is more commonly available in clinical settings than MEG, and therefore offers a greater potential for clinical translation. To that end, we recorded simultaneous whole-head MEG and EEG in 14 AS and 10 NTD subjects (age 15-28 years) using the same vibrotactile paradigm. Based on the scalp topographies, small sets of left hemisphere MEG and EEG sensors showing the maximum overall ITC were selected for group comparisons. Significant differences between the AS and NTD groups in ITC at 25 Hz as well as at 50 Hz were recorded in both MEG and EEG sensor data. For each measure, the mean ITC was lower in the AS than in the NTD group. EEG ITC values correlated with behaviorally assessed somatosensory sensation avoiding scores. The results show that information about ITC from MEG and EEG signals have substantial overlap, and thus EEG sensor-based ITC measures of the AS somatosensory processing biomarker previously identified using source localized MEG data have a potential to be developed into clinical use in AS, thanks to the higher accessibility to EEG in clinical settings.

9.
Front Neurol ; 13: 814940, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812111

RESUMO

Cortical hubs identified within resting-state networks (RSNs), areas of the cortex that have a higher-than-average number of connections, are known to be critical to typical cognitive functioning and are often implicated in disorders leading to abnormal cognitive functioning. Functionally defined cortical hubs are also known to change with age in the developing, maturing brain, mostly based on studies carried out using fMRI. We have recently used magnetoencephalography (MEG) to study the maturation trajectories of RSNs and their hubs from age 7 to 29 in 131 healthy participants with high temporal resolution. We found that maturation trajectories diverge as a function of the underlying cortical rhythm. Specifically, we found the beta band (13-30 Hz)-mediated RSNs became more locally efficient with maturation, i.e., more organized into clusters and connected with nearby regions, while gamma (31-80 Hz)-mediated RSNs became more globally efficient with maturation, i.e., prioritizing faster signal transmission between distant cortical regions. We also found that different sets of hubs were associated with each of these networks. To better understand the functional significance of this divergence, we wanted to examine the cortical functions associated with the identified hubs that grew or shrunk with maturation within each of these networks. To that end, we analyzed the results of the prior study using Neurosynth, a platform for large-scale, automated synthesis of fMRI data that links brain coordinates with their probabilistically associated terms. By mapping the Neurosynth terms associated with each of these hubs, we found that maturing hubs identified in the gamma band RSNs were more likely to be associated with bottom-up processes while maturing hubs identified in the beta band RSNs were more likely to be associated with top-down functions. The results were consistent with the idea that beta band-mediated networks preferentially support the maturation of top-down processing, while the gamma band-mediated networks preferentially support the maturation of bottom-up processing.

10.
PLoS Biol ; 20(2): e3001541, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35167585

RESUMO

Organizing sensory information into coherent perceptual objects is fundamental to everyday perception and communication. In the visual domain, indirect evidence from cortical responses suggests that children with autism spectrum disorder (ASD) have anomalous figure-ground segregation. While auditory processing abnormalities are common in ASD, especially in environments with multiple sound sources, to date, the question of scene segregation in ASD has not been directly investigated in audition. Using magnetoencephalography, we measured cortical responses to unattended (passively experienced) auditory stimuli while parametrically manipulating the degree of temporal coherence that facilitates auditory figure-ground segregation. Results from 21 children with ASD (aged 7-17 years) and 26 age- and IQ-matched typically developing children provide evidence that children with ASD show anomalous growth of cortical neural responses with increasing temporal coherence of the auditory figure. The documented neurophysiological abnormalities did not depend on age, and were reflected both in the response evoked by changes in temporal coherence of the auditory scene and in the associated induced gamma rhythms. Furthermore, the individual neural measures were predictive of diagnosis (83% accuracy) and also correlated with behavioral measures of ASD severity and auditory processing abnormalities. These findings offer new insight into the neural mechanisms underlying auditory perceptual deficits and sensory overload in ASD, and suggest that temporal-coherence-based auditory scene analysis and suprathreshold processing of coherent auditory objects may be atypical in ASD.


Assuntos
Percepção Auditiva/fisiologia , Transtorno do Espectro Autista/fisiopatologia , Sincronização Cortical/fisiologia , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica/métodos , Adolescente , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/psicologia , Criança , Feminino , Humanos , Magnetoencefalografia/métodos , Masculino , Tempo de Reação/fisiologia
11.
Neuroimage Clin ; 33: 102956, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35151039

RESUMO

Rolandic epilepsy is the most common form of epileptic encephalopathy, characterized by sleep-potentiated inferior Rolandic epileptiform spikes, seizures, and cognitive deficits in school-age children that spontaneously resolve by adolescence. We recently identified a paucity of sleep spindles, physiological thalamocortical rhythms associated with sleep-dependent learning, in the Rolandic cortex during the active phase of this disease. Because spindles are generated in the thalamus and amplified through regional thalamocortical circuits, we hypothesized that: 1) deficits in spindle rate would involve but extend beyond the inferior Rolandic cortex in active epilepsy and 2) regional spindle deficits would better predict cognitive function than inferior Rolandic spindle deficits alone. To test these hypotheses, we obtained high-resolution MRI, high-density EEG recordings, and focused neuropsychological assessments in children with Rolandic epilepsy during active (n = 8, age 9-14.7 years, 3F) and resolved (seizure free for > 1 year, n = 10, age 10.3-16.7 years, 1F) stages of disease and age-matched controls (n = 8, age 8.9-14.5 years, 5F). Using a validated spindle detector applied to estimates of electrical source activity in 31 cortical regions, including the inferior Rolandic cortex, during stages 2 and 3 of non-rapid eye movement sleep, we compared spindle rates in each cortical region across groups. Among detected spindles, we compared spindle features (power, duration, coherence, bilateral synchrony) between groups. We then used regression models to examine the relationship between spindle rate and cognitive function (fine motor dexterity, phonological processing, attention, and intelligence, and a global measure of all functions). We found that spindle rate was reduced in the inferior Rolandic cortices in active but not resolved disease (active P = 0.007; resolved P = 0.2) compared to controls. Spindles in this region were less synchronous between hemispheres in the active group (P = 0.005; resolved P = 0.1) compared to controls; but there were no differences in spindle power, duration, or coherence between groups. Compared to controls, spindle rate in the active group was also reduced in the prefrontal, insular, superior temporal, and posterior parietal regions (i.e., "regional spindle rate", P < 0.039 for all). Independent of group, regional spindle rate positively correlated with fine motor dexterity (P < 1e-3), attention (P = 0.02), intelligence (P = 0.04), and global cognitive performance (P < 1e-4). Compared to the inferior Rolandic spindle rate alone, models including regional spindle rate trended to improve prediction of global cognitive performance (P = 0.052), and markedly improved prediction of fine motor dexterity (P = 0.006). These results identify a spindle disruption in Rolandic epilepsy that extends beyond the epileptic cortex and a potential mechanistic explanation for the broad cognitive deficits that can be observed in this epileptic encephalopathy.


Assuntos
Epilepsia Generalizada , Epilepsia Rolândica , Adolescente , Criança , Eletroencefalografia/métodos , Epilepsia Rolândica/diagnóstico por imagem , Humanos , Convulsões , Tálamo
12.
Prog Neurobiol ; 203: 102077, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34033856

RESUMO

Autism spectrum disorder (ASD) is associated with widespread receptive language impairments, yet the neural mechanisms underlying these deficits are poorly understood. Neuroimaging has shown that processing of socially-relevant sounds, including speech and non-speech, is atypical in ASD. However, it is unclear how the presence of lexical-semantic meaning affects speech processing in ASD. Here, we recorded magnetoencephalography data from individuals with ASD (N = 22, ages 7-17, 4 females) and typically developing (TD) peers (N = 30, ages 7-17, 5 females) during unattended listening to meaningful auditory speech sentences and meaningless jabberwocky sentences. After adjusting for age, ASD individuals showed stronger responses to meaningless jabberwocky sentences than to meaningful speech sentences in the same left temporal and parietal language regions where TD individuals exhibited stronger responses to meaningful speech. Maturational trajectories of meaningful speech responses were atypical in temporal, but not parietal, regions in ASD. Temporal responses were associated with ASD severity, while parietal responses were associated with aberrant involuntary attentional shifting in ASD. Our findings suggest a receptive speech processing dysfunction in ASD, wherein unattended meaningful speech elicits abnormal engagement of the language system, while unattended meaningless speech, filtered out in TD individuals, engages the language system through involuntary attention capture.


Assuntos
Transtorno do Espectro Autista , Adolescente , Atenção , Percepção Auditiva , Criança , Feminino , Humanos , Idioma , Magnetoencefalografia , Masculino
13.
Trends Neurosci ; 44(7): 510-512, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33965213

RESUMO

A recent paper by Boto et al. established reliability of noninvasive functional connectivity measurements with a new whole-head optically pumped magnetometer magnetoencephalography (OPM-MEG) system. This rapidly developing technology enables a conformal sensor array to accommodate different head sizes and opens up new avenues for experiments in more naturalistic settings.


Assuntos
Magnetoencefalografia , Humanos , Reprodutibilidade dos Testes
14.
Neuroimage ; 237: 118097, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940151

RESUMO

BACKGROUND: TMS neuronavigation with on-line display of the induced electric field (E-field) has the potential to improve quantitative targeting and dosing of stimulation, but present commercially available solutions are limited by simplified approximations. OBJECTIVE: Developing a near real-time method for accurate approximation of TMS induced E-fields with subject-specific high-resolution surface-based head models that can be utilized for TMS navigation. METHODS: Magnetic dipoles are placed on a closed surface enclosing an MRI-based head model of the subject to define a set of basis functions for the incident and total E-fields that define the subject's Magnetic Stimulation Profile (MSP). The near real-time speed is achieved by recognizing that the total E-field of the coil only depends on the incident E-field and the conductivity boundary geometry. The total E-field for any coil position can be obtained by matching the incident field of the stationary dipole basis set with the incident E-field of the moving coil and applying the same basis coefficients to the total E-field basis functions. RESULTS: Comparison of the MSP-based approximation with an established TMS solver shows great agreement in the E-field amplitude (relative maximum error around 5%) and the spatial distribution patterns (correlation >98%). Computation of the E-field took ~100 ms on a cortical surface mesh with 120k facets. CONCLUSION: The numerical accuracy and speed of the MSP approximation method make it well suited for a wide range of computational tasks including interactive planning, targeting, dosing, and visualization of the intracranial E-fields for near real-time guidance of coil positioning.


Assuntos
Fenômenos Eletromagnéticos , Substância Cinzenta , Modelos Teóricos , Estimulação Magnética Transcraniana/métodos , Substância Branca , Campos Eletromagnéticos , Humanos , Neuronavegação/métodos
15.
Autism Res ; 14(6): 1101-1114, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33709531

RESUMO

The processing of information conveyed by faces is a critical component of social communication. While the neurophysiology of processing upright faces has been studied extensively in autism spectrum disorder (ASD), less is known about the neurophysiological abnormalities associated with processing inverted faces in ASD. We used magnetoencephalography (MEG) to study both long-range and local functional connectivity, with the latter assessed using local cross-frequency coupling, in response to inverted faces stimuli, in 7-18 years old individuals with ASD and age and IQ matched typically developing (TD) individuals. We found abnormally reduced coupling between the phase of the alpha rhythm and the amplitude of the gamma rhythm in the fusiform face area (FFA) in response to inverted faces, as well as reduced long-range functional connectivity between the FFA and the inferior frontal gyrus (IFG) in response to inverted faces in the ASD group. These group differences were absent in response to upright faces. The magnitude of functional connectivity between the FFA and the IFG was significantly correlated with the severity of ASD, and FFA-IFG long-range functional connectivity increased with age in TD group, but not in the ASD group. Our findings suggest that both local and long-range functional connectivity are abnormally reduced in children with ASD when processing inverted faces, and that the pattern of abnormalities associated with the processing of inverted faces differs from the pattern of upright faces in ASD, likely due to the presumed greater reliance on top-down regulations necessary for efficient processing of inverted faces. LAY SUMMARY: We found alterations in the neurophysiological responses to inverted faces in children with ASD, that were not reflected in the evoked responses, and were not observed in the responses to upright faces. These alterations included reduced local functional connectivity in the fusiform face area (FFA), and decreased long-range alpha-band modulated functional connectivity between the FFA and the left IFG. The magnitude of long-range functional connectivity between the FFA and the inferior frontal gyrus was correlated with the severity of ASD.


Assuntos
Transtorno do Espectro Autista , Adolescente , Transtorno do Espectro Autista/diagnóstico por imagem , Criança , Ritmo Gama , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia , Córtex Pré-Frontal
16.
J Clin Neurophysiol ; 38(2): 112-123, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33661787

RESUMO

SUMMARY: High-density EEG (HD-EEG) recordings use a higher spatial sampling of scalp electrodes than a standard 10-20 low-density EEG montage. Although several studies have demonstrated improved localization of the epileptogenic cortex using HD-EEG, widespread implementation is impeded by cost, setup and interpretation time, and lack of specific or sufficient procedural billing codes. Despite these barriers, HD-EEG has been in use at several institutions for years. These centers have noted utility in a variety of clinical scenarios where increased spatial resolution from HD-EEG has been required, justifying the extra time and cost. We share select scenarios from several centers, using different recording techniques and software, where HD-EEG provided information above and beyond the standard low-density EEG. We include seven cases where HD-EEG contributed directly to current clinical care of epilepsy patients and highlight two novel techniques which suggest potential opportunities to improve future clinical care. Cases illustrate how HD-EEG allows clinicians to: case 1-lateralize falsely generalized interictal epileptiform discharges; case 2-improve localization of falsely generalized epileptic spasms; cases 3 and 4-improve localization of interictal epileptiform discharges in anatomic regions below the circumferential limit of standard low-density EEG coverage; case 5-improve noninvasive localization of the seizure onset zone in lesional epilepsy; cases 6 and 7-improve localization of the seizure onset zone to guide invasive investigation near eloquent cortex; case 8-identify epileptic fast oscillations; and case 9-map language cortex. Together, these nine cases illustrate that using both visual analysis and advanced techniques, HD-EEG can play an important role in clinical management.


Assuntos
Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Epilepsia/diagnóstico por imagem , Epilepsia/fisiopatologia , Adolescente , Adulto , Idoso , Mapeamento Encefálico/tendências , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Criança , Eletrodos/tendências , Eletroencefalografia/tendências , Feminino , Previsões , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Couro Cabeludo/diagnóstico por imagem , Couro Cabeludo/fisiopatologia , Convulsões/diagnóstico por imagem , Convulsões/fisiopatologia , Adulto Jovem
17.
Front Neurosci ; 15: 552666, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33767606

RESUMO

Most magneto- and electroencephalography (M/EEG) based source estimation techniques derive their estimates sample wise, independently across time. However, neuronal assemblies are intricately interconnected, constraining the temporal evolution of neural activity that is detected by MEG and EEG; the observed neural currents must thus be highly context dependent. Here, we use a network of Long Short-Term Memory (LSTM) cells where the input is a sequence of past source estimates and the output is a prediction of the following estimate. This prediction is then used to correct the estimate. In this study, we applied this technique on noise-normalized minimum norm estimates (MNE). Because the correction is found by using past activity (context), we call this implementation Contextual MNE (CMNE), although this technique can be used in conjunction with any source estimation method. We test CMNE on simulated epileptiform activity and recorded auditory steady state response (ASSR) data, showing that the CMNE estimates exhibit a higher degree of spatial fidelity than the unfiltered estimates in the tested cases.

18.
Clin Neurophysiol ; 132(3): 708-719, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33571879

RESUMO

OBJECTIVE: To clarify the effects of unfused cranial bones on magnetoencephalography (MEG) signals during early development. METHODS: In a simulation study, we compared the MEG signals over a spherical head model with a circular hole mimicking the anterior fontanel to those over the same head model without the fontanel for different head and fontanel sizes with varying skull thickness and conductivity. RESULTS: The fontanel had small effects according to three indices. The sum of differences in signal over a sensor array due to a fontanel, for example, was < 6% of the sum without the fontanel. However, the fontanel effects were extensive for dipole sources deep in the brain or outside the fontanel for larger fontanels. The effects were comparable in magnitude for tangential and radial sources. Skull thickness significantly increased the effect, while skull conductivity had minor effects. CONCLUSION: MEG signal is weakly affected by a fontanel. However, the effects can be extensive and significant for radial sources, thicker skull and large fontanels. The fontanel effects can be intuitively explained by the concept of secondary sources at the fontanel wall. SIGNIFICANCE: The minor influence of unfused cranial bones simplifies MEG analysis, but it should be considered for quantitative analysis.


Assuntos
Fontanelas Cranianas/anatomia & histologia , Fontanelas Cranianas/fisiologia , Magnetoencefalografia/métodos , Modelos Anatômicos , Humanos , Lactente , Recém-Nascido , Crânio/anatomia & histologia , Crânio/fisiologia
19.
Neuroimage ; 224: 117430, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33038537

RESUMO

Low spatial resolution is often cited as the most critical limitation of magneto- and electroencephalography (MEG and EEG), but a unifying framework for quantifying the spatial fidelity of M/EEG source estimates has yet to be established; previous studies have focused on linear estimation methods under ideal scenarios without noise. Here we present an approach that quantifies the spatial fidelity of M/EEG estimates from simulated patch activations over the entire neocortex superposed on measured resting-state data. This approach grants more generalizability in the evaluation process that allows for, e.g., comparing linear and non-linear estimates in the whole brain for different signal-to-noise ratios (SNR), number of active sources and activation waveforms. Using this framework, we evaluated the MNE, dSPM, sLORETA, eLORETA, and MxNE methods and found that the spatial fidelity varies significantly with SNR, following a largely sigmoidal curve whose shape varies depending on which aspect of spatial fidelity that is being quantified and the source estimation method. We believe that these methods and results will be useful when interpreting M/EEG source estimates as well as in methods development.


Assuntos
Eletroencefalografia/métodos , Magnetoencefalografia/métodos , Neocórtex/fisiologia , Processamento de Sinais Assistido por Computador , Análise Espacial , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Feminino , Humanos , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Neocórtex/diagnóstico por imagem , Dinâmica não Linear , Descanso , Razão Sinal-Ruído , Adulto Jovem
20.
Neuroimage Clin ; 29: 102501, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33310630

RESUMO

The neurophysiology of face processing has been studied extensively in the context of social impairments associated with autism spectrum disorder (ASD), but the existing studies have concentrated mainly on univariate analyses of responses to upright faces, and, less frequently, inverted faces. The small number of existing studies on neurophysiological responses to inverted face in ASD have used univariate approaches, with divergent results. Here, we used a data-driven, classification-based, multivariate machine learning decoding approach to investigate the temporal and spatial properties of the neurophysiological evoked response for upright and inverted faces, relative to the neurophysiological evoked response for houses, a neutral stimulus. 21 (2 females) ASD and 29 (4 females) TD participants ages 7 to 19 took part in this study. Group level classification accuracies were obtained for each condition, using first the temporal domain of the evoked responses, and then the spatial distribution of the evoked responses on the cortical surface, each separately. We found that classification of responses to inverted neutral faces vs. houses was less accurate in ASD compared to TD, in both the temporal and spatial domains. In contrast, there were no group differences in the classification of evoked responses to upright neutral faces relative to houses. Using the classification in the temporal domain, lower decoding accuracies in ASD were found around 120 ms and 170 ms, corresponding the known components of the evoked responses to faces. Using the classification in the spatial domain, lower decoding accuracies in ASD were found in the right superior marginal gyrus (SMG), intra-parietal sulcus (IPS) and posterior superior temporal sulcus (pSTS), but not in core face processing areas. Importantly, individual classification accuracies from both the temporal and spatial classifiers correlated with ASD severity, confirming the relevance of the results to the ASD phenotype.


Assuntos
Transtorno do Espectro Autista , Reconhecimento Facial , Adolescente , Adulto , Criança , Feminino , Humanos , Lobo Temporal , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...